锅厨房设施拖车工具优化设计随各种轴承设垫片密封半圆键流体动力学FUN88乐天堂app下载链传动近日,电子信息与电气工程学院人工智能研究院教授杨小康、助理教授王韫博指导的AI+Science研究团队的成果《NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields》被国际顶级机器学习会议ICML 2022收录。论文所提出的“神经流体(NeuroFluid)”模型,利用基于神经隐式场的人工智能可微渲染技术,将流体物理仿真看作求解流体场景三维渲染问题的逆问题——从流体场景的一段多视角表观图像中,即可反推出流体内部的运动规律。这项成果为计算流体动力学、多粒子动力学系统研究开辟了一种人工智能新途径。
流体运动研究属于自然科学基础领域的研究范畴,在航空航天、大气、海洋、航运、能源、建筑、环境等众多领域有着广泛应用。在传统研究方法中FUN88乐天堂app下载,求解流体运动(例如速度场)需要首先在理论上精确刻画流体的动力学模型,并结合微分方程、数值分析对模型求解FUN88乐天堂app下载。但是通常对于复杂问题(例如湍流),人们很难用数学物理方程进行描述,复杂流体的Navier-Stokes方程是世界级千禧难题,至今没有被完美解决。现有基于深度学习的方法通常从拉格朗日视角描述流体,即流体被看作由许多粒子组成,通过测定和约束每个粒子的运动即可测定和改变流体的运动。但是大多数方法通常要求已知流体的物理属性(例如粘性),并且需要粒子的运动信息(位置和速度)作为训练数据,这在真实场景中几乎不太可能。
针对流体力学模型难以刻画和求解的问题,文章提出一种名为NeuroFluid的神经网络方法,实现流体动态反演(fluid dynamics grounding),即根据稀疏视角下对流体的2D表观视觉观察,推断推流体内在的3D物理运动状态,例如粒子的速度和位置等。如图2所示,NeuroFluid包含基于神经网络的流体粒子状态转移模型(Particle Transition Model)和由粒子驱动的神经网络渲染器(PhysNeRF),并将二者整合到一个端到端的联合优化框架中。优化过程包含三个阶段:
1. 模拟:粒子状态转移模型根据初始状态(可用立体视觉方法粗估)预测流体粒子在后续时刻的运动轨迹。
2. 渲染:神经网络渲染器PhysNeRF(图2右)根据粒子的几何信息将模拟结果渲染成图像。
3. 比对:渲染图像和真实图像比对,计算误差,通过梯度反向传递优化模型参数。
文章使用的流体数据(HoneyCone、WaterCube、WaterSphere)具有不同的物理属性(如密度、粘度、颜色)或初始状态(如流体粒子位置、整体形态)。
下列实验从粒子动态反演、未来状态预测、新视角图像渲染、PhysNeRF域外场景泛化,验证了NeuroFluid的有效性。
本实验计算从图像反演的粒子位置与真实粒子位置之间的距离误差(Pred2GT distance),作为评价指标FUN88乐天堂app下载。图3展示了NeuroFluid与流体粒子预测的有监督方法DLF(Ummenhofer等人发表在ICLR 2019)的数值结果对比,显然,NeuroFluid从视频中反演的流体粒子状态比DLF(用粒子运动速度和位置作为训练数据)更准确。图4对模型的粒子状态推断结果做了可视化,注意到随着时间的推移,NeuroFluid相比基线模型,其反演结果运动更加自然,能更好地匹配真实流体动态。
图3. NeuroFluid(浅蓝色)在三个测试集上关于流体粒子位置的反演结果,相比流体粒子仿真的有监督模型DLF,NeuroFluid从图像推理流体内部状态,明显具有更好的准确性
图4. NeuroFluid(第三行)在WaterCube场景中对流体粒子位置的推断结果,图中第一行为生成对应观测图像序列时所使用的“真实”流体粒子位置
在有效学习了流体的粒子状态转移模型后,可以很方便地实现预测流体在未来时刻的运动状态。如图5所示,本实验评估未来十个时刻内,模型预测的粒子位置与真实情况的误差。结果表明,NeuroFluid能够通过视觉观测学习流体运动的规律,推演合理的流体未来动态。
图5. 流体未来状态预测误差。其中,DLF*表示将基线模型在与测试场景物理属性相近的数据上进行微调;DLF+表示将基线模型直接在测试场景上进行微调
为了验证PhysNeRF渲染器的有效性,本实验在新视角合成(novel view synthesis)的任务上,广泛对比了各种基于神经隐式场的可微渲染技术(具体参见论文)。如图6所示,在输入了粒子几何信息的情况下,NeuroFluid的渲染结果不仅在动态上与目标结果的匹配度最高,而且可以更好地渲染出流体的细节(如溅起的水珠)。
PhysNeRF的基本假设是流体图像渲染应以粒子状态为驱动,故而应具有不同粒子分布下的强大泛化能力。为验证其泛化能力,实验在使用有限的场景训练好PhysNeRF渲染器后,在测试时改变了流体的初始形貌FUN88乐天堂app下载,如图7所示,该几何形状为计算机图形学经典的Stanford Bunny。值得注意的是,在没有用Stanford Bunny数据对模型进行训练微调的情况下,PhysNeRF较为精细地渲染出了流体的表面细节。
上海交通大学AI+Science研究团队所提出的NeuroFluid模型能成功拟合符合视觉观测的流体运动转移规律,从视觉表观观测反演流体内在运动,有望为传统流体力学无法准确刻画的复杂流体运动(如湍流)提供一种全新的计算范式。
上一篇:上一篇:中国唯一 合肥企业本源量子入围空客量子计算全球挑战赛五强
下一篇:下一篇:俄罗斯航空研究中心与中国开展合作